p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.696C23, C4.1202- (1+4), (C8×Q8)⋊34C2, C4⋊Q8.35C4, C8⋊4Q8⋊41C2, C4.22(C8○D4), C22⋊Q8.27C4, C4⋊C8.238C22, (C2×C4).682C24, (C4×C8).341C22, C42.230(C2×C4), (C2×C8).442C23, C42.C2.20C4, (C4×Q8).283C22, C8⋊C4.101C22, C2.34(Q8○M4(2)), C22⋊C8.238C22, C42.6C4.34C2, C23.107(C22×C4), (C2×C42).789C22, C22.205(C23×C4), (C22×C4).946C23, C42.12C4.47C2, C42⋊C2.88C22, C42.7C22.3C2, C23.37C23.24C2, C2.25(C23.32C23), C2.33(C2×C8○D4), C4⋊C4.122(C2×C4), C22⋊C4.23(C2×C4), (C2×C4).84(C22×C4), (C2×Q8).166(C2×C4), (C22×C4).361(C2×C4), SmallGroup(128,1717)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 204 in 161 conjugacy classes, 126 normal (28 characteristic)
C1, C2 [×3], C2, C4 [×4], C4 [×12], C22, C22 [×3], C8 [×8], C2×C4 [×6], C2×C4 [×8], C2×C4 [×5], Q8 [×6], C23, C42 [×4], C42 [×4], C22⋊C4 [×4], C4⋊C4 [×16], C2×C8 [×8], C22×C4 [×3], C2×Q8 [×4], C4×C8 [×2], C4×C8 [×4], C8⋊C4 [×6], C22⋊C8 [×4], C4⋊C8 [×12], C2×C42, C42⋊C2 [×2], C4×Q8 [×4], C22⋊Q8 [×4], C42.C2 [×2], C4⋊Q8 [×2], C42.12C4, C42.6C4, C42.7C22 [×4], C8×Q8 [×2], C8⋊4Q8 [×6], C23.37C23, C42.696C23
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], C22×C4 [×14], C24, C8○D4 [×2], C23×C4, 2- (1+4) [×2], C23.32C23, C2×C8○D4, Q8○M4(2), C42.696C23
Generators and relations
G = < a,b,c,d,e | a4=b4=e2=1, c2=b, d2=a2, ab=ba, ac=ca, dad-1=a-1, ae=ea, bc=cb, bd=db, be=eb, dcd-1=ece=a2c, ede=b2d >
(1 31 55 17)(2 32 56 18)(3 25 49 19)(4 26 50 20)(5 27 51 21)(6 28 52 22)(7 29 53 23)(8 30 54 24)(9 46 64 36)(10 47 57 37)(11 48 58 38)(12 41 59 39)(13 42 60 40)(14 43 61 33)(15 44 62 34)(16 45 63 35)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 63 55 16)(2 9 56 64)(3 57 49 10)(4 11 50 58)(5 59 51 12)(6 13 52 60)(7 61 53 14)(8 15 54 62)(17 35 31 45)(18 46 32 36)(19 37 25 47)(20 48 26 38)(21 39 27 41)(22 42 28 40)(23 33 29 43)(24 44 30 34)
(2 56)(4 50)(6 52)(8 54)(9 60)(10 14)(11 62)(12 16)(13 64)(15 58)(18 32)(20 26)(22 28)(24 30)(33 37)(34 48)(35 39)(36 42)(38 44)(40 46)(41 45)(43 47)(57 61)(59 63)
G:=sub<Sym(64)| (1,31,55,17)(2,32,56,18)(3,25,49,19)(4,26,50,20)(5,27,51,21)(6,28,52,22)(7,29,53,23)(8,30,54,24)(9,46,64,36)(10,47,57,37)(11,48,58,38)(12,41,59,39)(13,42,60,40)(14,43,61,33)(15,44,62,34)(16,45,63,35), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,55,16)(2,9,56,64)(3,57,49,10)(4,11,50,58)(5,59,51,12)(6,13,52,60)(7,61,53,14)(8,15,54,62)(17,35,31,45)(18,46,32,36)(19,37,25,47)(20,48,26,38)(21,39,27,41)(22,42,28,40)(23,33,29,43)(24,44,30,34), (2,56)(4,50)(6,52)(8,54)(9,60)(10,14)(11,62)(12,16)(13,64)(15,58)(18,32)(20,26)(22,28)(24,30)(33,37)(34,48)(35,39)(36,42)(38,44)(40,46)(41,45)(43,47)(57,61)(59,63)>;
G:=Group( (1,31,55,17)(2,32,56,18)(3,25,49,19)(4,26,50,20)(5,27,51,21)(6,28,52,22)(7,29,53,23)(8,30,54,24)(9,46,64,36)(10,47,57,37)(11,48,58,38)(12,41,59,39)(13,42,60,40)(14,43,61,33)(15,44,62,34)(16,45,63,35), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,55,16)(2,9,56,64)(3,57,49,10)(4,11,50,58)(5,59,51,12)(6,13,52,60)(7,61,53,14)(8,15,54,62)(17,35,31,45)(18,46,32,36)(19,37,25,47)(20,48,26,38)(21,39,27,41)(22,42,28,40)(23,33,29,43)(24,44,30,34), (2,56)(4,50)(6,52)(8,54)(9,60)(10,14)(11,62)(12,16)(13,64)(15,58)(18,32)(20,26)(22,28)(24,30)(33,37)(34,48)(35,39)(36,42)(38,44)(40,46)(41,45)(43,47)(57,61)(59,63) );
G=PermutationGroup([(1,31,55,17),(2,32,56,18),(3,25,49,19),(4,26,50,20),(5,27,51,21),(6,28,52,22),(7,29,53,23),(8,30,54,24),(9,46,64,36),(10,47,57,37),(11,48,58,38),(12,41,59,39),(13,42,60,40),(14,43,61,33),(15,44,62,34),(16,45,63,35)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,63,55,16),(2,9,56,64),(3,57,49,10),(4,11,50,58),(5,59,51,12),(6,13,52,60),(7,61,53,14),(8,15,54,62),(17,35,31,45),(18,46,32,36),(19,37,25,47),(20,48,26,38),(21,39,27,41),(22,42,28,40),(23,33,29,43),(24,44,30,34)], [(2,56),(4,50),(6,52),(8,54),(9,60),(10,14),(11,62),(12,16),(13,64),(15,58),(18,32),(20,26),(22,28),(24,30),(33,37),(34,48),(35,39),(36,42),(38,44),(40,46),(41,45),(43,47),(57,61),(59,63)])
Matrix representation ►G ⊆ GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 16 | 0 | 0 |
0 | 0 | 2 | 1 | 0 | 0 |
0 | 0 | 9 | 7 | 0 | 1 |
0 | 0 | 12 | 2 | 16 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 14 | 15 | 0 |
0 | 0 | 7 | 13 | 2 | 2 |
0 | 0 | 5 | 8 | 4 | 14 |
0 | 0 | 8 | 12 | 7 | 7 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 10 | 0 | 0 | 0 |
0 | 0 | 11 | 15 | 5 | 5 |
0 | 0 | 10 | 8 | 5 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 10 | 14 | 16 | 0 |
0 | 0 | 0 | 7 | 0 | 16 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,2,9,12,0,0,16,1,7,2,0,0,0,0,0,16,0,0,0,0,1,0],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,10,7,5,8,0,0,14,13,8,12,0,0,15,2,4,7,0,0,0,2,14,7],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,10,11,10,0,0,5,0,15,8,0,0,0,0,5,5,0,0,0,0,5,12],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,10,0,0,0,0,1,14,7,0,0,0,0,16,0,0,0,0,0,0,16] >;
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | ··· | 4S | 8A | ··· | 8H | 8I | ··· | 8T |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | - | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C8○D4 | 2- (1+4) | Q8○M4(2) |
kernel | C42.696C23 | C42.12C4 | C42.6C4 | C42.7C22 | C8×Q8 | C8⋊4Q8 | C23.37C23 | C22⋊Q8 | C42.C2 | C4⋊Q8 | C4 | C4 | C2 |
# reps | 1 | 1 | 1 | 4 | 2 | 6 | 1 | 8 | 4 | 4 | 8 | 2 | 2 |
In GAP, Magma, Sage, TeX
C_4^2._{696}C_2^3
% in TeX
G:=Group("C4^2.696C2^3");
// GroupNames label
G:=SmallGroup(128,1717);
// by ID
G=gap.SmallGroup(128,1717);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,120,219,100,675,1018,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=e^2=1,c^2=b,d^2=a^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=a^2*c,e*d*e=b^2*d>;
// generators/relations